Fig. 1 The design procedure
Development of the virtual experimental bench on the basis of modernized research centrifugal compressor stage test unit with the 3D impeller

A A Aksenov, A M Danilishin, А М Dubenko, Y V Kozhukov

Abstract. Design modernization of the centrifugal compressor stage test bench with three dimensional impeller blades was carried out for the possibility of holding a series of experimental studies of different 3D impeller models. The studies relates to the problem of joint work of the impeller and the stationary channels of the housing when carrying out works on modernization with the aim of improving the parameters of the volumetric capacity or pressure in the presence of design constraints. The object of study is the experimental single end centrifugal compressor stage with the 3D impeller. Compressor stage consists of the 3D impeller, vaneless diffuser (VLD), outlet collector — folded side scroll and downstream pipe. The drive is a DC motor 75 kW. The increase gear (multiplier) was set between the compressor and DC motor, gear ratio is i = 9.8. To obtain the characteristics of the compressor and the flow area the following values were measured: total pressure, static pressure, direction (angles) of the stream in different cross sections. Additional pneumometric probes on the front wall of the VLD of the test bench have been installed. Total pressure probes and foster holes for the measurement of total and static pressure by the new drainage scheme. This allowed carrying out full experimental studies for two elements of centrifugal compressor stage. After the experimental tests the comprehensive information about the performance of model stage were obtained. Was measured geometric parameters and the constructed virtual model of the experimental bench flow part with the help of Creo Parametric 3.0 and ANSYS v. 16.2. Conducted CFD calculations and verification with experimental data. Identifies the steps for further experimental and virtual works.

  Далее

Figure 6. The basic diagram of the air supply for reconstruction 1, 2, 3 - the main compressor units with frequency converters, and built-in coolers and moistures; 4 - Reserve compressor unit; 5, 6, 7 - drying units with a fine filter; 8 - 24 - stop valves; 25 - Check Valve
The methodology for the existing complex pneumatic systems efficiency increase with the use of mathematical modeling

A.M. Danilishin1, S.V. Kartashov1, Y.V. Kozhukhov1 and E.G. Kozin2

Absrtact. The method for the existing complex pneumatic systems efficiency increase has been developed, including the survey steps, mathematical technological process modeling, optimizing the pneumatic system configuration, its operation modes, selection of optimal compressor units and additional equipment. Practical application of the methodology is considered by the example of the existing pneumatic systems underground depot reconstruction. The first stage of the methodology is the survey of acting pneumatic system. The second stage of technique is multivariable mathematical modeling of the pneumatic system operation. The developed methodology is applicable to complex pneumatic systems.

Далее

Рис. 6 Внешний вид трансзвукового РК
Исследование осерадиальных дозвуковых и трансзвуковых рабочих колес центробежных компрессоров методами вычислительной газодинамики с применением пакета программ ANSYS CFX

К.А. Кабалык , Е.Г.Никитин ,Ю.В. Кожухов, В. Крыллович

С развитием энергетики возрастает необходимость в центробежных компрессорах (ЦК) высокой эффективности. Структура потока в рабочих колесах (РК) центробежных компрессоров имеет сложных характер. Применение программных пакетов вычислительной гидродинамики (CFD) при проектировании или оптимизации конструкции позволяет существенно сократить объем экспериментальных исследований, а, следовательно, снизить себестоимость машины.

Целью работы является расчет характеристик двух типов ступеней ЦК: ступени, оснащенной дозвуковым осерадиальным колесом (ОРК),, и ступени с трансзвуковым ОРК, .

Далее

Рис. 2. Структура потока в сечении по средней высотеканала проточной части при массовом расходе m ̅=1,889 кг/с
Суперкомпьютеры: новый уровень моделирования рабочего процесса турбокомпрессоров

Ю.В. Кожухов, А.М. Данилишин

Приведены результаты расчета на суперкомпьютере пространственного течения в ступени центробежного компрессора методами вычислительной газодинамики с применением программного комплекса AnsysCFX 14.0. Рассмотрена промежуточная ступень компрессора с лабиринтными уплотнениями и приведены результаты сравнения расчета и натурного эксперимента.

Все вычисления проводились на кластерах Отделения вычислительных ресурсов СПбГПУ. Параметры одного узла кластера: AMDOpteron 280 – 2 процессора по 2 ядра. Расчёты производились при параллельном запуске процессоров. Для предварительного расчёта использовалось от 4 до 12 узлов, причем расчет на 6 и более узлов не давал существенного ускорения счета, поэтому для последующих расчетов решено использовать 5 узлов кластера (20 ядер).

Далее

Рис. 4. Расчётная область центробежной компрессорной ступени
Моделирование нестационарных процессов в турбомашинах на основе нелинейно-гармонического NLH-метода с использованием суперкомпьютеров

Ю.Я. Болдырев, А.О. Рубцов, Ю.В. Кожухов, А.А. Лебедев, И.В. Чеглаков, А.М. Данилишин

Целью работы является апробация нелинейно-гармонического метода NLH (Non-linear harmonic), предназначенного для моделирования нестационарного аэродинамического взаимодействия ротора и статора в турбомашинах, отличающегося высокой скоростью вычислений в сравнении с подходами полномасштабного нестационарного расчёта течения. Расчеты нестационарных течений в турбомашинах относятся к классу вычислительно ресурсоемких задач и для решения реальных задач за приемлемое время требуется использование суперкомпьютеров. На кафедре «Компрессорной, вакуумной и холодильной техники» в целях апробации получены решения двухмерных и трёхмерных течений в турбомашинах с применением NLH метода, реализованного в программном комплексе NUMECAFine/Turbo. К настоящему времени проведено сравнение нестационарного течения со стационарным, получены картины течений и рассмотрен вопрос о консервативности параметров течения.

Далее

ОСТАЛИСЬ ВОПРОСЫ?

Позвоните нам по телефону +7 (812) 715-41-64
или оставьте заявку и получите консультацию нашего эксперта