Рис.3 Векторы скорости на 1 режиме
Исследование рабочего колеса ценробежного компрессора на стенде ЭЦК 2 на оптимальном и максимальном режиме

Д.М. Харя, В.А. Миляев

Актуальность. Развитие ряда основных отраслей промышленности, таких как металлургия, энергетика, газовая и химическая и.т.д. невозможно без совершенствования применяемого в них оборудования и, в частности, центробежных компрессоров.

Перед исследователями центробежных компрессоров стоит деве главные задачи:

  1. Повышение аэродинамической эффективности компрессоров;
  2. Разработка более точных методов аэродинамического расчета проточных частей;

Далее

Рисунок 2 – Интерфейс программы
Анализ и модернизация программы термодинамического расчета реального газа на базе модифицированных уравнений Бенедикта-Вебба-Рубина

М.И. Соколов М.С. Чернышев Н.А. Назаренко А.А. Аксенов

Актуальность. Неидеальность газов в молекулярно-кинетической теории рассматривается как результат взаимодействия молекул. В первом приближении ограничиваются рассмотрением парных взаимодействий, во втором-тройных и т.д. Такой подход приводит к вириалъному уравнению состояния, коэффициенты которого могут быть теоретически рассчитаны, если известен потенциал межмолекулярных взаимодействий. Наиболее полезно вириальное уравнение при рассмотрении свойств газов малой и умеренной плотности. Данная работа посвящена анализу и модернизации программы термодинамического расчета реального газа на базе модифицированных уравнений Бенедикта-Вебба-Рубина, предложенных ООО «ВНИИГАЗ»[1], в дальнейшем – мБВР(ВНИИГАЗ), представленной в предыдущей статье. [2]

Далее

Figure 2. Scheme 2: Flow path consisted of IGV, R1, S1, R2, EGV
Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L

K Tribunskaia and Y V Kozhukhov

Abstract. The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 – inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 – two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 – full-round model: IGV, rotor, diffuser.

Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: φ = 0.4 – 0.6. The computational domain was created with ANSYS CFX Workbench.

According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models.

The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.

Далее

Figure 1. Solid model NASA rotor 37 stage
Analysis of casing treatment`s impact on the axial compressor model stage characteristics

K Tribunskaia and Y V Kozhukhov

Abstract. There are special requirements for the compressors of aircraft engines. They must ensure maximum efficiency in a maximally large stable work zone Due to a high pressure ratio these stages are more susceptible to the losses from radial clearance. One of the approaches to reduce such losses is the application of above-rotor devices. In the following study there is considered the impact of such treatments on the compressor stage performance. Despite the fact that there is a sufficient amount of research about this issue, their results are contradictory. The use of these devices can affect the characteristics of compressor stage performance both positively and negatively. This study was conducted using the methods of computational fluid dynamics and was based on the NASA Rotor-37 geometry model stage. Results were obtained through the comparison of the characteristics of stages with and without above-rotor devices.

Далее

Figure 5. The influence of the inlet boundary location for the high-pressure impeller (IMP2)
Optimization of a centrifugal compressor impeller using CFD: the choice of simulation model parameters

V V Neverov, Y V Kozhukhov, A M Yablokov, A A Lebedev

Abstract. Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ѱT=0.71 and the low-pressure at ѱT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.

Далее

ОСТАЛИСЬ ВОПРОСЫ?

Позвоните нам по телефону +7 (812) 715-41-64
или оставьте заявку и получите консультацию нашего эксперта